

Pharmacy Adoption and Supply Constraints in Generic Pharmaceuticals: Evidence from Japan

Haruo Kakehi and Ryo Nakajima Graduate School of Economics, Keio University

Abstract

- ► We find that authorized generic (AG) adoption promotes generic substitution at pharmacies in Japan.
- Our model explains that the AG adoption depends on both patients' perception and pharmacy's cost factors.
- Our results inform policymakers that for-profit pharmacies play a key role in generic substitution and curbing medical costs.

Background	Empirical Specification
 Generic substitution can reduce the growing healthcare cost. Two types of generics. Authorized generic (AG): produced by a brand company. Other generic (OG): produced by generic companies. Consumers demand AG rather than OG. (Janssen, 2023). Can AG adoption promote generic substitution? Model both demand and supply side behavior. Take advantage of Japan's unique practices. 	► We estimate $y_{jt} = h_{jt}y_{jt}^{A} + (1 - h_{jt})y_{jt}^{O}$ $= \beta^{O} + \beta^{A}h_{jt} + \theta_{j}^{A}h_{jt} + \phi_{j}^{A} + \tau_{j} + \nu_{jt}$ (7) where $\nu_{jt} = h_{jt}\xi_{jt}^{A} + (1 - h_{jt})\xi_{jt}^{O}$ and $h_{jt} = 1$ if pharmacy adopts AG. $E_{eatures}$ $+ (\beta^{A} + \theta^{A})h_{t}$ explains betargeneous adoption effect

- Take auvantage of Japan's unique practices.
 - * Patients can purchase AG and OG with identical prices.

► In Japan,

- The government periodically sets the same retail price for AG and OG.
- Pharmacy adopts either AG or OG as a prescription drug.
 - * Patient's choice sets are either (Brand, AG) or (Brand, OG).
- Patients prefer AG but do not know which pharmacies have AG or OG.
- Pharmacies are financially incentivized by subsidies for a higher generic share.

Data

- Claims data provided by Japan System Techniques Co., Ltd.
- Use antibiotic generic (Levofloxacin 250mg and 500mg) approved in December 2014.
- Two periods panel data
 - 1st Period: 2015 and 2nd Period: 2021.
- AG has a large market share, and adoption differs across pharmacies.

Adoptio 2015	on Transition 2021	Fraction of Sample (% (N = 5106)
AG	AG	48.78
AG	OG	4.34
OG	AG	15.70
OG	OG	31.15

Ownership small chain individual Large chain

- * $(\beta^{A} + \theta_{i}^{A})h_{jt}$ explains heterogeneous adoption effect.
- * $\phi \theta_i^A$ deals with the adoption endogeneity.
- * The estimated θ_i^A may captures both AG perception and adoption cost factors.
- From Suri (2011), we use a projection θ_i^A on h_{jt} as follows

 $\theta_j^A = \lambda_0 + \lambda_1 h_{j1} + \lambda_2 h_{j2} + \lambda_3 h_{j1} h_{j2} + V_j.$

Parameter of interests

- ► β^A : Average AG perception.
- θ_i^A : Heterogeneous AG perception at pharmacy *j*.
- ϕ : Correlation of perceptions θ_i^A and θ_i^O .

Results

- Table 3 shows
 - β^A is **positive.**
 - * AG adoption increases generic substitution by 20.3% - 26.6%.
 - ϕ is **negative.**
 - Patients who prefer AG do not prefer OG.
- From equation (8), heterogeneous AG perception θ_i^A depends on h_{jt} .
 - We estimate θ^A_j for four groups.
 (i.e. Never, Late, Always, Early)
- Figure 2 implies
 Always group pharmacies adopt AG due to the positive AG perception (i.e. θ_j^A > 0).
 Never group pharmacies adopt OG due to the negative AG perception (i.e. θ_j^A < 0).

	Without Covariates	With Covariates
β^{A}	0.203**	0.266***
	(0.085)	(0.092)
ϕ	-0.411*	-0.547**
	(0.212)	(0.023)
λ_1	1.363**	1.034**
	(0.582)	(0.473)
λ_2	0.284	0.059
	(0.535)	(0.343)
λ_3	-1.364**	-0.943*
	(0.573)	(0.502)
Prefecture FE	Yes	Yes
Observations	10212	10212

(8)

Table 3: Estimation results

Fig. 1: The number of prescriptions

Adoption (%)	0.4103	0.4017	0.3897

 Table 2: AG share by pharmacies' ownership

(1)

(2)

(3)

(4)

(5)

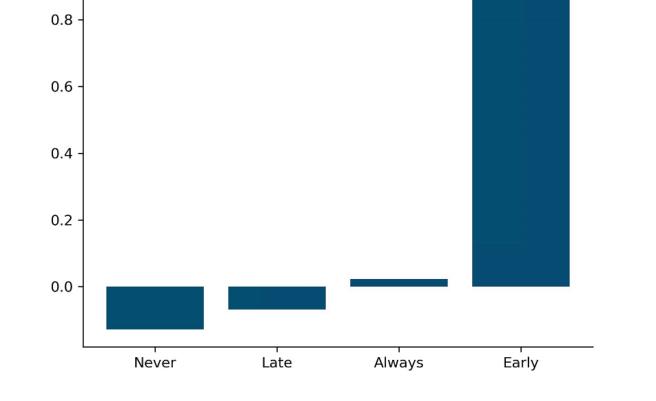
(6)

Model

- Pharmacy AG adoption decision
 - The pharmacy *j* maximizes profit π_{jt}^{ℓ} by choosing a drug type $\ell \in [AG, OG]$ at time *t*.

$$f_{jt}^{\ell} = subsidy_{jt}^{\ell} \cdot n_{jt} - (f_{jt}^{b} + f_{jt}^{\ell})$$

- * n_{jt} : the number of patients
- * f_{jt}^{b} and f_{jt}^{ℓ} : cost of brand, and AG or OG.


 $subsidy_{jt}^{\ell} = s_t \mathbf{1} \left(Y_{jt}^{\ell} r_{jt} + g_{jt} \geq c_t \right)$

- * s_t : the amount of subsidy
- ***** Y_{jt}^{ℓ} : generic share of antibiotics
- * g_{jt} : generic share of other drugs
- * C_t : subsidy threshold
- * r_{jt} : weight for antibiotics.
- The pharmacy adopts AG when $\pi_{jt}^{A} \pi_{jt}^{O} > 0$ or when

$$\mathsf{I}\left(Y_{jt}^{A} \geq \frac{c_{t} - g_{jt}}{r_{jt}}\right) - \mathsf{I}\left(Y_{jt}^{O} \geq \frac{c_{t} - g_{jt}}{r_{jt}}\right) \geq \frac{(f_{jt}^{A} - f_{jt}^{O})}{s_{t}n_{jt}}$$

- Patient AG demand
- Discrete choice demand by patient *i* after visiting the pharmacy *j* at time *t*.
 Patients have utility for AG and OG.

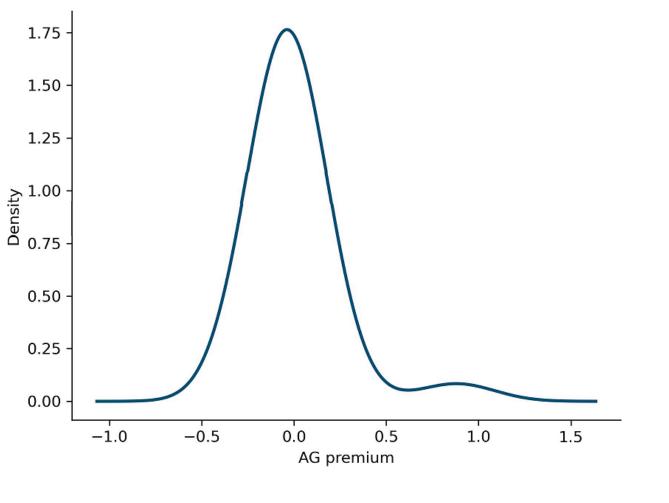

Heterogeneous AG perception θ^A_j can explain the heterogeneous AG adoption among pharmacies.

Fig. 2: The predicted AG perception θ_j^A

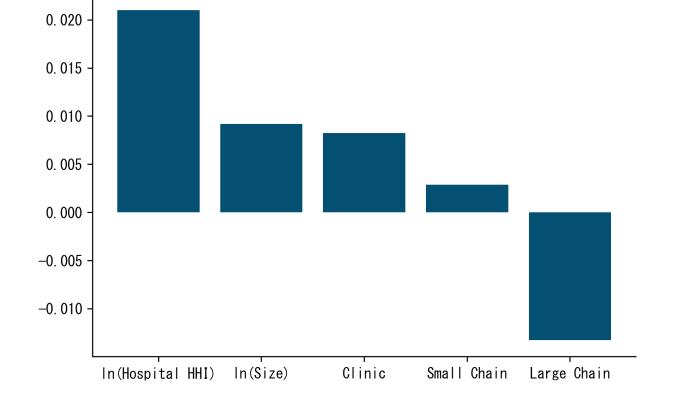
Discussion

- How relevant is the patients' perception?
 - We remove cost factor effects by the regression of θ^A_i on cost factors
 - 1. Management style: individual store, small chain, or large chain.
 - 2. **Pharmacy's size**: the number of pre-scription.
 - **3.** Prescription share from hospitals: Hospital HHI_j = $\sum_{h=1}^{H} (100 \times s_{jh})^2$.
 - 4. Types of prescription-issuing hospitals: small hospital, large hospital.
 - Figure 3 shows θ^A_j has large variation.
 * Cost removed θ^A_j also exhibits similar pattern as in Figure 2.

Fig. 3: The cost removed AG perception θ_j^A

$$U_{ijt}^{O} = \beta_{t}^{O} + \theta_{j}^{O} + \xi_{jt}^{O} + \varepsilon_{ijt}^{O}$$
$$U_{ijt}^{A} = \beta_{t}^{A} + \theta_{j}^{A} + \xi_{jt}^{A} + \beta_{t}^{O} + \xi_{jt}^{O} + \varepsilon_{ijt}^{A}$$
$$\underbrace{\mathbf{AG \ premium}}$$

► We adopt the projection method in Suri (2011)


$$\theta_j^O = \phi \theta_j^A + \tau_j$$
$$(\theta_j^O + \theta_j^A) = (1 + \phi) \theta_j^A + \tau_j.$$

Log-share demand equations are

$$\begin{split} y_{jt}^{O} &= \beta_t^{O} + \phi \theta_j^{A} + \tau_j + \xi_{jt}^{O} \\ y_{jt}^{A} &= \beta_t^{O} + \beta_t^{A} + (1 + \phi) \theta_j^{A} + \tau_j + (\xi_{jt}^{O} + \xi_{jt}^{A}), \end{split}$$

where
$$y_{jt}^{A} = \ln \left(Y_{jt}^{A} \right) - \ln \left(1 - Y_{jt}^{A} \right)$$
 and $y_{jt}^{O} = \ln \left(Y_{jt}^{O} \right) - \ln \left(1 - Y_{jt}^{O} \right)$.

- Who benefits from AG?
 - Patients benefit from AG adoption (i.e. $\beta > 0$, $\theta_i^A > 0$).
 - Figure 4 shows
 - * Smallest incentive for large chains.
 - Largest incentive for High HHI pharmacies.
- Uniform financial incentives may be inefficient in AG adoption.

Fig. 4: θ_j^A by pharmacy characteristics

References & Contact

- Suri, T. (2011). Selection and comparative advantage in technology adoption. Econometrica, 79(1), 159-209.
- Janssen, A. (2023). Generic and branded pharmaceutical pricing: Competition under switching costs. *The Economic Journal*, 133(653), 1937-1967.
- Contact: haruokakehi@keio.jp